4th International Conference on Crystallography & Novel Materials

November 19-20, 2018 Bucharest, Romania

Friday, 19 October 2018

Crystallography Techniques: Application to Lithium Mining

The Crystallographic study suggests a blending model of chemical solutions over a network of interconnected pipes and pumps.  The master goal of this current study is to rationalize a number of quality requirements in the network´s output.    It is well known that the traditional methodology and strategy used to tackle this kind of technical problem has been to consider a modeling methodology based upon flow and quality.  In this study, we suggest a new model and the overall method has been focused on the actual feasibility and throughout the course of the current study it is shown that, the whole process is reduced to a non-convex problem.

A rather complete and informative analysis of the intermolecular and intermolecular potentials is put forward with reference to the lanthanide type systems, such as in the, space group.  A particular situation occurs in both extreme of the series, say for   and respectively.  The thirteen trivalent lanthanide ions, moving along the series from  to , for these ions the shell is not fully occupied and therefore the physical and chemical properties are indeed, somehow challenging and interesting to examine using structural, spectroscopic and theoretical methods and model calculations.  

Using these methods of mining and mineralogy there has been development and many implementation in the new model by employing a numerical analysis method and the results obtained show up to be quite sensible and consistent so as to provide sound and realistic solutions. This area of research is quite relevant since new mobile technology; digital cameras, laptops and electro mobility and so forth have become essential to humankind. It is, well known that the operational availability is limited by the quality of the batteries employed. Prolonged operative life per load requirements has motivated research aimed to develop a new technology of energy storage. There are several options, nevertheless in this specific study we have chosen batteries based in Lithium since they have become attractive and highly efficient, due to the characteristic of this chemical element (Z=3). In this research a feasibility problem is modeling using a least square objective function over a convex polyhedral, where the only variables are the ones related to flow and the quality variables are “transferred” to the objective function, reducing the complexity of the constraints which makes the problem amenable to traditional techniques which are easy to implement. The Frank-Wolf´s method was used to solve the complex problem with a quite satisfactory performance. From a model viewpoint, this is a new approach and we believe that this methodology and strategy could seduce researchers to make improvements for the whole model presented in this article.

In this current research work, we have elaborated some physical models and carried out a substantial amount of calculations, so as to estimate the reticular energy and also, employing a thermodynamic Born-Haber cycle, we have been able to make some sound predictions and numerical estimate of heat of formations for the above series of lanthanide type crystals. The calculated energy values associated with these observables seems to be most reasonable, and these follow the expected trends, as may be anticipated from theoretical and experimental grounds. Both, the advantages and disadvantages of the current model calculations, have been tested against other previous calculations performed.

Thursday, 11 October 2018

Nanotechnology Strategy by developing Nano-crystalline Materials

Development of nano crystalline tungsten-25%Rhenium alloy reinforced with hafnium carbide is a challenging task as these alloys are difficult to synthesize by conventional methods. The problem of these difficult to alloy elements can be addressed by using a unique combination of mechanical alloying and Spark Plasma Sintering SPS techniques via powder metallurgy route.  Rhenium was added to lower ductile-to-brittle transition temperature and to increase re crystallization temperature of tungsten. SPS is rapid consolidating technique which prevents grain growth.

Basically, glycan beautifies all mammalian cell surfaces through glycosylation. Glycan is one of the most important post-modiļ¬cations of proteins. Glycans on cell surfaces facilitate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, intracellular signalling events and host-pathogen interactions. High-performance optical sensors are very important for rapid, sensitive and precise detection of chemical and biological species for various fields, including biomedical diagnosis, drug screening, food safety, environmental protection etc.

To explore the novel kinds of sensors with low cost, portability, sufficient sensitivity, high specificity, excellent reproducibility, and multiplexing detection capability still remain in high demand. Therefore, a significant advancement of silicon nanotechnology, functional silicon nanomaterial/Nano hybrids (e.g., fluorescent silicon nanoparticles, gold/silver nanoparticles-decorated silicon nanowires or silicon wafer, etc) featuring unique optical properties have been intensively employed for the design of high-quality fluorescent and surface-enhanced Raman scattering (SERS) biosensors. Therefore, currently exists increasing concerns on the development of a kind of high-performance SERS platform, which is suitable for glycan expression of different cell lines and as well as used for the sensitive detection of glycans on live cells. Herein, we introduce the possibility of silicon-based probe for biomolecules of interest in the vicinity of cells using SERS.

These tool materials can withstand high temperatures and harsh conditions in joining application such as Friction Stir Welding FSW of steel and titanium alloys. FSW is a green process which does not emit fume and toxic fumes during the process.  Sintering was carried between 1500-1800oC. Mechanically alloyed and Spark Plasma Sintered alloy and composite were characterized by optical microscopy. Spark plasma sintered samples were further electrochemically etched in one molar concentrated solution of NaOH. The results of the FESEM images confirm microstructural revelation of these difficult to etch alloy and composites. Field Emission Scanning Electron Microscopy FESEM and X-ray Diffraction.  Microstructural investigation of consolidated specimens was initially carried out by conventional etching and metallography techniques. Optical micrographs showed no visible signs of grain boundary etching. 

Come & Join us to meet the World's Great Scientists, Researchers professionals, Professors, Young Research Forum (YRF), Students @ Crystallography Congress 2018 during November 19-20, 2018 in Bucharest, Romania.

Jessica Mark
Program Manager | Crystallography Congress 2018
Email: crystallography@enggmeet.com

Friday, 28 September 2018

Synthesis, Structural Analysis and Antibacterial Effect of a Novel Heteronuclear-Coordination Polymer

The crystal complex was crystallised the triclinic space group. The smallest repeating unit of the complex contains an [Fe(TPT)Ag2(H2O)2](ClO4)3 unit. The Fe atom is coordinated by three nitrogen of terpyridine moiety from one TPT ligand and by three nitrogen of terpyridine moiety from another TPT ligand in an octahedral geometry fashion. While one Ag atom is coordinated by two nitrogen atoms of one pyrazolyl moiety from a TPT ligand and two nitrogen atoms of adjacent pyrazolyl moiety from another TPT ligand to generate a linear coordination polymer in a tetragedral geometry. The third nitrogen atom of the last pyrazolyl part is also coordinated to a silver ion which was itself coordinated to two water molecules through their oxygen atoms in a trigonal planar geometry. In vitro study of the complex against some bacterial pathogens were also investigated.

The synthesis and crystal structure of a novel polymeric silver(I)-Iron(II) complex containing bridging ligand 4’-(4-(2,2,2-tris(1H-pyrazol-1-ido)ethoxymethyl)phenyl-2,2’:6’,2”-terpyridine (TPT) are described. The reaction of TPT with FeCl2.6H2O afforded a complex [Fe(TPT)2]Cl2 which in turn reacted with a range of silver salts such as AgNO3, AgClO4 resulted in the formation of heterometal complexes which were characterised using 1H NMR and ES-MS techniques. The reaction solution of the [Fe(TPT)2]Cl2 complex with molar eqiuvalnet of AgClO4 resulted in a solution with gace needdle-like crystals suitable for single X-ray crystallography.

There has been extensive studies of binding of chiral Ru(II) complexes to DNA backbone structures. J. K. Barton has studies the cationic coordination of a variety of chiral poly-pyridine Ru(II) complexes to demonstrate chiral discrimination in binding to different forms of DNA. Many experimental techniques have been applied to study the interaction of tris(phenanthroline)ruthenium(II) with DNA, but despite this, its binding mode and its effect on the DNA structure are uncertain and have been the subject of much controversy. In this study, bis[4'-(4-methylphenyl)-2,2':6',2"-terpyridine]Co(III) tris(nitrate) complex was synthesized and characterized using conventional method such as 1H NMR, ES-MS, UV-vis spectrophotometry. The Co ion was six coordinated, but the geometry was significantly distorted from that of an ideal octahedral. In this study, the terpyridine type ligand fragment appealed because the ligand structure ensures a meridional arrangement of the donor atoms, which reduces the number of possible isomers. Co(III) ion was attracted because of its higher positive charge compared to Ru(II) which will have more affinity towards the negatively charged DNA structure.
Absorbance and fluorescence methods, and circular dichroism, were used to study the interaction of the Co(III) complex solution in water with DNA.

Meet us at “4th International Conference on Crystallography & Novel Materials” in Bucharest, Romania for more recent updates on Material Science, Crystallography and Nanotechnology.

For more details, contact:
Jessica Mark
Program Manager | Crystallography Congress 2018

Friday, 21 September 2018

Advanced Materials for Protein Crystallization

The crystallization of proteins, nucleic acids, biological complexes, will depend on the creation of a solution that is supersaturated in the macro molecule. Since 60 years, X-ray crystallography provides structural details of protein molecules, information that is crucial to unravel biological mechanisms at molecular level. Crystallography requires that sample is in crystal form. Getting such crystals at acceptable quality for crystallographic analysis is not trivial and strategies to make this process less expensive and time consuming are not available, still now.

Technologies that assist with Protein crystallization
·         High throughput crystallization screening
·         Protein engineering
Advanced materials represent a turning point in this field because they can be exploited to control nucleation and growth step making more effective the crystallization process. Researchers are developing membrane-based materials able to trigger protein crystallization also in conditions that are not fruitful by standard methods.  Such materials have a great impact both in industry and academic studies because significantly reduce cost and time of the protein purification and crystallization process. Then they developed membrane-materials functionalized by hydro-gel that proved ability in getting very stress-resistant crystals, which are suitable for structure-based drug design studies that require very harsh soaking conditions. This material, similarly to our metal oxide nano particle-functionalized membrane, significantly widens crystallization window and produce crystals having good diffraction quality. 

Methods of protein crystallization
·         Vapor diffusion
·         Micro batch
·         Micro-dialysis
·         Free-interface diffusion

Membrane based materials are showing very effective in protein crystallization and to produce crystals having specific features. Our efforts are focusing now in functionalizing such materials by Nano template to crystallize very challenging proteins such as intact antibodies, and to develop membrane able to promote bio mineralization and to enable poly-morphs selection. 
Attend our upcoming conference “4th International Conference on Crystallography & Novel Materials”, during November 19-20, 2018 at Bucharest, Romania and share your knowledge and latest updates regarding smart materials and material science.

Jessica Mark
Program Manager | Crystallography Congress 2018